ISTF/5 - SP/01 Agenda Item 4b 16/02/15

Long-term lonospheric Anomaly Monitor (LTIAM) Overview

ICAO ISTF/5 16 – 18 *February,* 2015

Threat: Severe Ionosphere Disturbances

- Ionosphere spatial gradients as large as 412 mm/km have been observed in the United States since April 2000.
- A worst-case ionospheric threat model was developed for LAAS in CONUS based on study of about 10 severe days.

Limitations of the CAT I LAAS Ionospheric Anomaly Threat Model

• Limitations:

- Constructed based on a small number of ionospheric storm events
- Receiver separations within the CORS network (typically 40 100 km) do not reflect the LAAS architecture

Need of Long-Term Ionospheric Anomaly (LTIA) Monitor

 Long-term ionospheric anomaly monitoring is needed to build an lonospheric threat model, monitor ionospheric anomalies over the system life cycle, verify CAT I threat model, and trigger updates if needed.

Ionospheric Threat Space with Newly Validated Ionospheric Anomalies

Overview of LTIA Monitor

Overview of LTIA Monitor

Internal Processing

Iono. Event Search

- Search for periods/areas of interest
- Automated daily processing
- Event selection criteria

Iono. Delay & Gradient Estimation

 Create "simple truth" data using dual-frequency data

 Estimate iono. gradients using station-pair method Iono. Anomaly Candidate Screening

- Search for unusually large gradients (e.g., > 300 mm/km)
- Automated screening to remove receiver faults, data errors

Overview of LTIA Monitor

Manual Validation

 Validate that the observed events are actually due to the ionosphere and not receiver faults or data errors using L1only measurement

Example of LTIAM Plots for Anomaly Candidate (Brazilian TM Study: SAVO-SSA1 PRN 21)

Distribution of LTIAM software tool

- Version 2.1 was made available to IGWG participating members (2012)
- The same version of the tool and supporting documents are available to the ISTF group members (an approval from FAA is obtained)
 - LTIAM-2.1 (zip file)
 - LTIAM Algorithm Description Doc v2.1
 - LTIAM User Manual v2.0
- Application form for LTIAM software package

References

- "User Manual for the Long-Term Ionospheric Anomaly (LTIA) Monitoring of the Ground-Based Augmentation System," *KAIST*, Version 2.0, June 20, 2012
- "Algorithm Description Document and User Manual for Long-Term Ionospheric Anomaly Monitor (LTIAM) of the Local Area Augmentation System," *Tetra Tech AMT, Inc., Stanford University, KAIST*, Version 2.1, August 13, 2012.
- S. Jung and J. Lee, "Long Term Ionospheric Anomaly Monitoring for Ground Ba sed Augmentation Systems." *Radio Sci.*, 47, RS4006, July 2012, doi:10.1029/201 2RS005016.
- J. Lee, S. Jung, M. Kim, J. Seo, S. Pullen, and S. Close, "Results from Automate d lonospheric Data Analysis for Ground-Based Augmentation Systems," *Proce edings of the Institute of Navigation International Technical Meeting* (ION ITM 2 012), Newport Beach CA, January, 2012
- J. Lee, S. Jung, and S. Pullen, "Enhancements of Long Term Ionospheric Anom alies Monitoring for the Ground-Based Augmentation System," *Proceedings of the Institute of Navigation International Technical Meeting* (ION ITM 2011), San Diego, CA, January 24-26, 2011
- J. Lee, S. Jung, E. Bang, S. Pullen, and P. Enge, "Long Term Monitoring of Iono spheric Anomalies to Support the Local Area Augmentation System," *Proceedi ngs of the 23rd International Technical Meeting of the Satellite Division of the In stitute of Navigation* (ION-GNSS 2010), Portland, OR, September 2010.